
The Challenge of Using C in Safety-Critical Applications

Shea Newton, Nathan Aschbacher
PolySync Technologies, Inc.

Abstract
Software errors in safety-critical systems can have se-
vere consequences: property-loss, environmental devas-
tation, injury, or death. Despite the severity of these
risks, software continues to be written for safety-critical
applications in languages that permit common classes
of failures, such as undefined behavior, state corrup-
tion, and unexpected termination. One such language
is C. Language standards that define allowable subsets
(e.g. MISRA) and static analysis tools are often used
in an attempt to ameliorate these failures by detect-
ing them in the program code before they result in a
critical issue at runtime. These traditional methods
are ultimately insufficient when it comes to providing
ahead-of-time assurances about safe runtime behavior
for safety-critical applications. Alternative approaches
must be considered.

Introduction
The cost of software errors in safety-critical applica-
tions carry the potential for physical injury and death.1
Software errors also carry a quantifiable monetary cost.
In 2002 it was estimated at $59.5 billion annually to
the U.S. economy.2

Strategies for reducing these costs by catching software
errors early in the development process have evolved
to identify patterns known to be unsafe or prone to
error.3 Among those strategies, thorough design docu-
ments and regular code audits are generally constants
in today’s software development processes, but they are
susceptible to the same vulnerability as a software’s
implementation: human error. Static code analysis is
used to mitigate this issue by automating the process
of catching dangerous patterns and practices.4

1Wikipedia contributors. (2018) 2009–11 Toyota vehicle
recalls. Available at: https://en.wikipedia.org/wiki/2009-11_
Toyota_vehicle_recalls [Accessed April 11, 2018]

2The National Institute of Standards and Technol-
ogy(NIST), Section ES.6 of the Planning Report 02-3. Avail-
able at: https://www.nist.gov/sites/default/files/documents/
director/planning/report02-3.pdf [Accessed April 11, 2018]

3Fagan M.E. (2002) Design and Code Inspections to Reduce
Errors in Program Development.

4Wichmann B.A., Canning A.A, Clutterbuck D.L., Winsbor-
row L.A., Ward N.J, Marsh D.W.R (1995) Industrial perspective
on static analysis.

Background
The presence of C in safety-critical systems is near-
ubiquitous. Among the many reasons for its preva-
lence are performance, control, footprint, and com-
piler support. However, C also has very permissive
semantics which can make it dangerous. A draft of
the 2010 ISO/IEC 9899:2011 standard details nearly
two-hundred scenarios for undefined behavior.5 Still,
that ubiquity means it is often the most likely candidate
even for new safety-critical software development.

The permissiveness of the C standard has given rise
to other standards that promote only subsets of func-
tionality, limiting the potential for undefined behavior.
Some notable examples include: The Computer Emer-
gency Response Team (CERT) developed CERT C and
CERT C++, Lockheed Martin’s JSF++ AV, and the
Barr Group promoted Netrino C. For applications in
the automotive field a commonly applied standard is
MISRA-C.

These subsets of the C standard are often promoted as
a path to safer software. The implication being that
some safer subset equates to being good enough for
safety-critical use cases.6

This paper seeks to explore common runtime errors
to determine whether safer, as provided by standard-
ized language subsets and/or static analysis tools, is a
meaningful distinction for the C language.

Significance Argument from a
Constrained Space of Runtime Errors

MISRA-C requires that all switch statements have a
default case and that all if ... else if statements
are terminated with an else. It does not necessarily
follow that this kind of constraint provides any assur-
ances about reduction of possible runtime errors.7 In
order to make claims about constraints on the space of
possible runtime errors, we need complete requirements.
For example, that all cases are accounted for.

5ISO/IEC 9899:201x (Committee Draft, 2010). Available
at: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.
pdf [Accessed April 11, 2018]

6JSF AV C++. http://www.prqa.com/coding-standards/jsf-
av-c/ [Accessed April 11, 2018]

7Boogard C, Moonen L (2008) Assessing the Value of Coding
Standards: An Empirical Study.

1

https://en.wikipedia.org/wiki/2009-11_Toyota_vehicle_recalls
https://en.wikipedia.org/wiki/2009-11_Toyota_vehicle_recalls
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf
http://www.prqa.com/coding-standards/jsf-av-c/
http://www.prqa.com/coding-standards/jsf-av-c/

Significance Argument from the Cost of
Catching Bugs

The cost of software errors extends to the time and effort
required to diagnose, document, and remedy discovered
issues. Because these issues are likely unpredicted,
the time and effort required is often unaccounted for,
requiring that other in-progress tasks be postponed.
Remediation comes with the risk of introducing other
issues, more bugs created in rework and redesign, and
technical debt due to urgency around a fix. Catching
software errors at compile-time or before runtime means
saving, money, time, and potentially lives.

Significance Argument from the
Feasibility of the Problem

In languages like C the problem of comprehensive static
analysis may be NP complete.8 The implication of that
is static analysis of C code is limited to an approxi-
mation; there will always be potential for gaps in the
capability of the tools.

Methods
To evaluate what assurances the MISRA-C standard,
and C-oriented static analysis tools are capable of, we
selected four classes of dangerous behaviors permitted
by the C language standard: multiple mutable aliases,
modification of immutable data, ambiguous pattern
matching, and data races. We then applied the MISRA-
C guidelines and several C-oriented static analysis tools
to make a determination of how effective those practices
and tools were in exposing dangerous sources of software
failures in code.

We also investigated multiple additional standards as
potential complements to MISRA-C, but best-practice
guidelines across standards were generally in direct
conflict with each other; making it difficult to produce
a compliant program at all. Examples of such conflicts
included:

• Using #define the keywords goto and continue
to raise compiler errors if used.

• No reserved words can be redefined with #define.
• #define must not be used.

Additionally, style-related issues like variable casing and
whitespace requirements varied regularly between stan-
dards. Because of these conflicts and because MISRA-C
is a de facto standard in the automotive space, the
scope of the results published in this paper are limited
to MISRA-C.

We selected a leading proprietary compliance tool for
its industry acceptance, and reputation as state of the
art to check for MISRA-C violations. Though that
suite is able to check against a broad set of standards,

8Landi W.(1992) Undecidability of static analysis.

we opted instead to evaluate a diversity of tooling to
ensure that a single origin could not account for any
of the results shown. The additional set of tooling
included Cppcheck,9 Flawfinder,10 Flint++,11 Frama-
C,12 OCLint,13 scan-build,14 splint,15, and Vera++.16

In the vein of a proof by contradiction, we started with
the premise that some set of static analysis tooling is
able to guarantee safety from a given error caused by
one of the classes of dangerous behavior enumerated
previously. Next, we wrote a simple program capable
of representing each class of error and recorded the
violations reported by each of the static analysis tools.

The example source cited in this paper has been mod-
ified for illustrative purposes but is available for re-
producibility as a static-analysis-argumentation
repository on GitHub.17

Mutable Aliasing
Where multiple mutable aliases are permitted there
will always be a risk of inadvertently using an invalid
reference. To combat this MISRA-C requires runtime
checks for NULL pointers. Some static analysis tooling
performs very well when warning about code that looks
like dereferencing a NULL pointer. Other types of data
corruption however, are less detectable.

The following is a reduced version of the sample program
written to violate assurances about memory safety the
MISRA-C standard, or the static analysis tooling we
evaluated, might be used to make.

The program creates a reference to valid data. Next, it
aliases that reference and corrupts it. Afterward, using
the reference results in undefined behavior, generally a
segmentation fault.

typedef struct {
int32_t x;
int32_t y;
int32_t z;

} example_s;
/* Example data. */

9Cppcheck. Available at: https://github.com/danmar/
cppcheck [Accessed April 11, 2018]

10Flawfinder. Available at: https://www.dwheeler.com/
flawfinder [Accessed April 11, 2018]

11Flint++. Available at: https://github.com/JossWhittle/
FlintPlusPlus [Accessed April 11, 2018]

12Frama-C. Available at: http://frama-c.com [Accessed April
11, 2018]

13OCLint. Available at: https://github.com/oclint/oclint [Ac-
cessed April 11, 2018]

14scan-build. Available at: https://clang-analyzer.llvm.org/
scan-build.html [Accessed April 11, 2018]

15splint(1) - Linux man page. https://linux.die.net/man/1/
splint [Accessed April 11, 2018]

16Vera++. Available at: https://bitbucket.org/verateam/vera/
wiki/Introduction [Accessed April 11, 2018]

17static-analysis-argumentation. Available at: https://github.
com/PolySync/static-analysis-argumentation [Accessed April 11,
2018]

2

https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://www.dwheeler.com/flawfinder
https://www.dwheeler.com/flawfinder
https://github.com/JossWhittle/FlintPlusPlus
https://github.com/JossWhittle/FlintPlusPlus
http://frama-c.com
https://github.com/oclint/oclint
https://clang-analyzer.llvm.org/scan-build.html
https://clang-analyzer.llvm.org/scan-build.html
https://linux.die.net/man/1/splint
https://linux.die.net/man/1/splint
https://bitbucket.org/verateam/vera/wiki/Introduction
https://bitbucket.org/verateam/vera/wiki/Introduction
https://github.com/PolySync/static-analysis-argumentation
https://github.com/PolySync/static-analysis-argumentation

example_s a = {
.x = 1,
.y = 2,
.z = 3

};
/* Mutable reference. */
example_s * b = &a;
/* Mutable alias. */
example_s ** c = &b;
/* Reference corrupted. */
*c += 2048;
/* Use after corruption. */
b->y = 4;
b->x = 5;
b->z = 6;

The following table represents the violations resulting
from static analysis of the source file alias.c available
on GitHub.18

Tool Violations Reported
MISRA-C Checker -
Cppcheck -
Flawfinder -
Flint++ Prefer ’nullptr’ to ’NULL’
Frama-C -
OCLint -
scan-build -
splint ’main’ should return ’int’
Vera++ -

Table 1: Results of the static analysis of alias.c

The premise of mutable aliasing is at the root of all
the other errors we explore. This base case is exploited
again in each of the following examples in order to
provide loud results in the form of segmentation faults.

Breaking the ‘const‘ Promise
In an attempt to prohibit the previous behavior, this
example illustrates a case where even an attempt to
make a reference immutable is a contract that can be
broken. This program again creates a reference to valid
data, but this time the reference has a constant qualifi-
cation. That reference is aliased and corrupted despite
the qualification. When the reference is used later, it
results in undefined behavior; generally a segmentation
fault.

/* Example data. */
example_s a = {

.x = 1,

.y = 2,

.z = 3
};

18static-analysis-argumentation. Available at: https:
//github.com/PolySync/static-analysis-argumentation/blob/
master/c_examples/alias.c [Accessed April 11, 2018]

/* Constant reference to
* example data.
*/
const example_s const * b = &a;
/* Constant alias to reference. */
const example_s * const * c = &b;
/* Cast away const to corrupt
* reference. */
*((example_s **)(c)) += 2048;
/* Use reference after
* corruption. */
int32_t sum = b->x + b->y + b->z;

The following table represents the violations resulting
from static analysis of the source file constant.c avail-
able on GitHub.19

Tool Violations Reported
MISRA-C Checker -
Cppcheck -
Flawfinder -
Flint++ Prefer ’nullptr’ to ’NULL’
Frama-C -
OCLint duplicate ’const’
scan-build duplicate ’const’
splint ’main’ should return ’int’
Vera++ -

Table 2: Results of the static analysis of constant.c

Unreliable Pattern Matching
There are no safeguards from misusing enumerations in
C. They have the look and feel of a new type but are
indistinguishable from integer constants in use. In this
example an enum is matched on an unrelated value and
leads, once again, to the use of corrupted data.

/* Enumeration intended for use. */
typedef enum {
APPLY_BRAKE = 1,
APPLY_THROTTLE = 2
} action_e;
/* Ambiguous enumeration. */
enum {
SELF_DESTRUCT = 2,
};
/* Example data. */
example_s a = {

.x = 1,

.y = 2,

.z = 3
};
/* Mutable reference. */
example_s * b = &a;
/* Mutable alias. */
example_s ** c = &b;

19static-analysis-argumentation. Available at: https:
//github.com/PolySync/static-analysis-argumentation/blob/
master/c_examples/constant.c [Accessed April 11, 2018]

3

https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/alias.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/alias.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/alias.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/constant.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/constant.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/constant.c

/* Intended use as an 'action_e'
* enum type.
*/
action_e t = APPLY_THROTTLE;
/* Match on integer instead. */
switch (t)
{

/* Wrong pattern. */
case SELF_DESTRUCT: {
*c += 2048; break;
}
default: { break; }

}

/* Use after corruption. */
b->y = 4;
b->x = 5;
b->z = 6;

The following table represents the violations resulting
from static analysis of the source file pattern.c avail-
able available on GitHub.20

Tool Violations Reported
MISRA-C Checker -
Cppcheck -
Flawfinder -
Flint++ Prefer ’nullptr’ to ’NULL’
Frama-C -
OCLint -
scan-build -
splint ’main’ should return ’int’
Vera++ -

Table 3: Results of the static analysis of pattern.c

Data Races
This example uses a data race condition to corrupt
its reference to a shared resource. Taken in an asyn-
chronous context, the corrupting logic below is unreach-
able. Inside a threaded callback however, corruption of
the shared resource occurs reliably.

/* Arbitrary bound. */
while ((b != NULL) && (b->x < 10))
{

/* Simulate some amount of
* work.
*/
(void)sleep(0);

/* If another thread has
* changed the shared resource.
*/
if (b->a >= 10)
{

20static-analysis-argumentation. Available at: https:
//github.com/PolySync/static-analysis-argumentation/blob/
master/c_examples/pattern.c [Accessed April 11, 2018]

b += 2048;
}
else
{

/* Increment potentially
* corrupted reference.
*/
b->x += 1;

}
}

The following table represents the violations resulting
from static analysis of the source file thread.c available
on GitHub.21.

Tool Violations Reported
MISRA-C Checker 1. Static procedure is

not explicitly called.
2. Casting operation
on a pointer

Cppcheck -
Flawfinder -
Flint++ Prefer ’nullptr’ to ’NULL’
Frama-C ’_WORDSIZE’

redefined
OCLint -
scan-build -
splint Parse Error:

Non-function
declaration

Vera++ -

Table 4: Results of the static analysis of thread.c

A Different Approach
We want to make assurances about the behavior of our
safety-critical software. After setting out to discern
whether the MISRA-C standard and static analysis
tooling could provide us those assurances, we were able
to contradict that possibility in several cases. An in-
ability to reliably identify faults injected into simple
programs–using the static analysis tools identified in
this paper–diminishes the confidence that we could reli-
ably discover unintentional faults in complex programs.

Of the potential approaches to providing safety assur-
ances, we opted to explore other programming lan-
guages. Many offer protection from the class of errors
we detailed. A few of the outstanding candidates were
Haskell, SPARK Ada, and Rust.

For the purposes of this paper we chose the Rust lan-
guage to illustrate that our selected error scenarios are
preventable before runtime.

The following examples are reduced for brevity but are
also available in the static-analysis-argumentation

21static-analysis-argumentation. Available at: https:
//github.com/PolySync/static-analysis-argumentation/blob/
master/c_examples/thread.c [Accessed April 11, 2018]

4

https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/pattern.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/pattern.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/pattern.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/thread.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/thread.c
https://github.com/PolySync/static-analysis-argumentation/blob/master/c_examples/thread.c

repository on GitHub.22

Rust disallows much of the behavior C permits. The
method here represents idiomatic Rust more so than
literal translations from C. For example, we opted to
use the Box type over *mut. Attempting to dereference
a *mut without an unsafe block also results in compi-
lation errors, but does not illustrate the fundamental
differences between each language’s approach.

Safe Aliasing
The following example does not compile and the at-
tempt to corrupt our reference fails. Rust’s concept of
borrowing and ownership saves us here. Though we
are able chain together mutable references to our data—
each one borrowing ownership from the other—we are
not able to destroy what we don’t own.

struct Example {
x: i32,
y: i32,
z: i32,

}
let mut a: Example =

Example { x: 1, y: 2, z: 3 };
let mut b: Box<&Example> =

Box::new(&mut a);
let _c: Box<&&Example> =

Box::new(&mut b);
drop(**c);
//~^ ERROR cannot move out of
// borrowed content
b.x = 4;
//~^ ERROR cannot assign to `b.x`
// because it is borrowed
b.y = 5;
//~^ ERROR cannot assign to `b.y`
// because it is borrowed
b.z = 6;
//~^ ERROR cannot assign to `b.z`
// because it is borrowed

The Immutable Promise
In this example, we take the same approach but with
constants for extra effect. The additional errors shown
below are due to the attempt to mutate immutable
data. In Rust, the const promise isn’t so easily broken.

let mut a: Example =
Example { x: 1, y: 2, z: 3 };

let mut b: Box<&Example> =
Box::new(&mut a);

let c: Box<&&Example> =
Box::new(&mut b);

// Attempt to corrupt referenced data
22static-analysis-argumentation. Available at: https://github.

com/PolySync/static-analysis-argumentation [Accessed April 11,
2018]

drop(*(&mut(**c)));
//~^ ERROR cannot borrow immutable
// `Box` content `*c` as mutable
b.x = 4;
//~^ ERROR cannot assign to field
// `b.x` of immutable binding
b.y = 5;
//~^ ERROR cannot assign to field
// `b.y` of immutable binding
b.z = 6;
//~^ ERROR cannot assign to field
// `b.y` of immutable binding

Reliable Pattern Matching
In this example we’ve opted to panic! if the pattern
is matched incorrectly. However, this program fails to
compile, not even producing a potentially dangerous
artifact. The first thing to note is that Rust disallows
ambiguous enums. Second, despite the fact that both
ApplyBrake and SelfDestruct are assigned the value
1, Rust doesn’t allow one pattern matched as another by
default. It is also worth noting that Rust doesn’t require
an arbitrary number of patterns in match statements—
simply that each pattern is accounted for.

// Enumeration intended for use.
enum Action {

ApplyBrake = 1,
ApplyThrottle = 2,

}
// Second enumeration.
enum Destruct {

SelfDestruct = 1,
}
let pattern = Action::ApplyThrottle;
match pattern {

Destruct::SelfDestruct =>
//~^ ERROR mismatched types
{

panic!("Memory corrupted.")
}

}

Protection from Data Races
We’ll take this example in two parts. First, we directly
attempt to implement the behavior displayed in the
C example of a data race condition. There are many
complaints raised by the Rust compiler here around
concepts of ownership we saw in previous examples.
More explicitly however, this example leverages Rust’s
concept of move semantics. This code violates the
requirement that there is always exactly one binding to
any given resource.23

23Ownership. Doc.rust-lang.org. Available at: https://doc.
rust-lang.org/1.8.0/book/ownership.html [Accessed April 11,
2018]

5

https://github.com/PolySync/static-analysis-argumentation
https://github.com/PolySync/static-analysis-argumentation
https://doc.rust-lang.org/1.8.0/book/ownership.html
https://doc.rust-lang.org/1.8.0/book/ownership.html

while b.x < 10 {
//~^ ERROR use of moved value: `b.x`

thread::sleep(
time::Duration::from_secs(0));

if b.x >= 10 {
//~^ ERROR use of moved value:
// `b.x`

drop(b);
//~^ ERROR use of moved value:
// `b`

}
b.x = b.x + 1;
//~^ ERROR use of moved value:
// `*b`

}

Second, we’ll look at the Rust compiler’s requirements
for sharing data across threads. In the following exam-
ple, thread setup and teardown have been omitted.

let a: Example =
Example {

x: 1, y: 2, z: 3
};
let b: Box<&mut Example> =

Box::new(&mut a);
//~^ ERROR `a` does not live long enough
for _ in 0..thread_count {

handles.push(Some(thread::spawn(
|| { black_box(b)})));

//~^ ERROR capture of moved value:
// `b`

}

This example illustrates the violation of two of Rust’s
requirements for thread safety. First, the spawn func-
tion has what Rust calls a lifetime constraint. spawn’s
argument, a closure, “must have a lifetime of the whole
program execution.”24 Here, because we reference local
data, that requirement is not met. If any of the threads
spawned were to live longer than the scope of our data,
their references would become invalid.

Second, because there is exactly one mutable reference
to a resource at any given time, our reference must
be moved to a thread during the loop’s first iteration.
Rather than the borrowing behavior we saw previously,
moving transfers ownership completely. In the next
iteration of the loop, we cannot give what we would no
longer own.

Results

The static C code analysis reports generated while devel-
oping our examples generally fell into three categories
across the tools evaluated.

24std::thread::spawn - Rust. Doc.rust-lang.org. Available at:
https://doc.rust-lang.org/std/thread/fn.spawn.html [Accessed
April 11, 2018]

1. Cosmetic reporting. Errors raised due to incon-
sistent whitespace, short variable names, lack of
copyright notice, etc..

2. Best practice reporting. Recommended minimum
case declarations in a switch statement, returning
an int32_t from a function signature that specifies
uint32_t, no use of basic types such as int or
double.

3. Danger reports / actual bugs. Catching the use of
uninitialized data, dereferencing NULL pointers,
out of bounds array indexing.

Most of what is reflected in the C examples that were
written are not the bugs that go undetected. The bulk
of the code is a requirement of conforming to a tool’s
requirements. Sometimes addressing static analysis
violations meant the addition of significantly more code.
Though many of the requirements of that conformity
seem intuitively beneficial, modifying a code base to
appease the tooling has the potential to make it less
maintainable and to introduce other faults.25

Tables 1 through 4 exhibit the static analysis violations
still present in the source code corresponding to each
example. The details of each of those violations are as
follows:

Violation: Prefer ’nullptr’ to ’NULL’

The nullptr keyword is a feature of C++. This viola-
tion is an artifact of using Flint++, a C++ linter, on
C code.26

Violation: ’main’ should return ’int’s

This violation is the result of conflicting requirements
across tooling. MISRA-C directive 4.6 specifies that
typedefs indicating signedness and size should be used
instead of basic types, as in the following minimal ex-
ample:

typedef signed int SINT_32;
SINT_32 main(void){return 0;}

Our approach favored satisfying the requirements of
the proprietary MISRA-C checker above the rest of the
tooling.

Violation: duplicate ’const’

This violation represents style complaints from some of
the tooling, here for const over-qualification, but not
the error casued by assignment to a read-only location.

Violation: Static procedure is not explicitly
called

The MISRA-C standard does not address callbacks or
concurrency. This violation arose because the tool used

25Boogard C, Moonen L (2008) Assessing the Value of Coding
Standards: An Empirical Study.

26Flint++. Available at: https://github.com/JossWhittle/
FlintPlusPlus [Accessed April 11, 2018]

6

https://doc.rust-lang.org/std/thread/fn.spawn.html
https://github.com/JossWhittle/FlintPlusPlus
https://github.com/JossWhittle/FlintPlusPlus

for MISRA-C checking does not accept that a function
passed to pthread_create is explicitly used.

Violation: Casting operation on a pointer

This violation does represent an indication of dangerous
behavior and a legitimate concern. However, it doesn’t
address the root cause of the data race condition the
example was written to illustrate. The casting operation
from a void* is typical in C callbacks and was favored
over accessing global data and a violation originating
from an unused function parameter.

Violation: ’__WORDSIZE’ is redefined

This error is the result of Frama-C’s analysis of
pthread.h and originates in the source files outside
of the example program thread.c.

Violation: Parse-Error: Non-function declara-
tion

This error is the result of splint’s analysis of pthread.h
and originates in the source files outside of the example
program thread.c.

Conclusion
We have identified clear gaps in the capabilities of static
analysis tools for C, as well as in the commonly applied
coding standard MISRA-C. Those gaps indicate that
the ability to make broad assurances about the safety of
software written in C is infeasible using these methods.
Given our position that the automotive industry should
be pursuing the state of the art and that software writ-
ten in C with augmentation appears to fall short of that,
new opportunities and methods should be investigated
for qualification as state of the art.27

27NI.com (2018) What is the ISO 26262 Functional Safety
Standard? - National Instruments. Available at: http://www.ni.
com/white-paper/13647/en/ [Accessed April 11, 2018]

7

http://www.ni.com/white-paper/13647/en/
http://www.ni.com/white-paper/13647/en/

